Safety in numbers. Part 4

In the last 3 parts, we have covered just 2 basic types about failures that can be encountered in any flight. Now, that’s those that effect single systems, and their subsystems and those that impact a whole aircraft as a common effect.

The single failure cases were considered assuming that failures were independent. That is something fails but the effects are contained within one system.

There’s a whole range of other failures where dependencies exist between different systems as they fail. We did mention the relationship between a fuel system and a propulsion system. Their coexistence is obvious. What we need to do is to go beyond the obvious and look for relationships that can be characterised and studied.

At the top of my list is a condition where a cascade of failures ripple through aviation systems. This is when a trigger event starts a set of interconnected responses. Videos of falling dominoes pepper social media and there’s something satisfying about watching them fall one by one.

Aircraft systems cascade failures can start with a relatively minor event. When one failure has the potential to precipitate another it’s important to understand the nature of the dependency that can be hardwired into systems, procedures, or training.

It’s as well to note that a cascade, or avalanche breakdown may not be straightforward as it is with a line of carefully arranged dominos. The classical linear way of representing causal chains is useful. The limitation is that dominant, or hidden interdependencies can exist with multiple potential paths and different sequences of activation.

The next category of failure is a variation on the common-mode theme. This has more to do with the physical positions of systems and equipment on an aircraft. For example, a localised fire, flood, or explosion can defeat built-in redundancies or hardened components.

Earlier we mentioned particular risks. Now, we need to add to the list; bird strike, rotor burst, tyre burst and battery fires. The physical segregation of sub-systems can help address this problem.

Yes, probabilistic methods can be used to calculate likelihood of these failure conditions occurring.

The next category of failure is more a feature of failure rather than a type of failure. Everything we have talked about, so far, may be evident at the moment of occurrence. There can then be opportunities to take mitigating actions to overcome the impact of failure.

What about those aircraft systems failures that are dormant? That is that they remain passive and undetected until a moment when systems activation is needed or there’s demand for a back-up. One example could be just that, an emergency back-up battery that has discharged. It’s then unavailable when it’s needed the most. Design strategies like, pre-flight checks, built-in-test and continuous monitoring can overcome some of these conditions.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s