Electric aviation is not new. Not new at all. The engineers of the past struggled with two factors. Power and weight. A French electrically powered airship was the first aircraft to make a controlled circuit. On 9 August 1884, it flew a circular course of 8 km at a max speed of 14.5 mph. Its electric motor weighed 100 kilograms and its battery weighed 263 kilograms.
It’s not a problem to be able to distribute or use electrical power on-board an aircraft. The problem come in generating enough of it from a reliable source. Today’s “conventional” civil aircraft generate and use large amounts of electrical power. For example, the Boeing 787 has two starter/generators per engine[1]. Electrical power from the generators goes to four alternating current (AC) electrical distribution buses, where it is either sent for use as is (235 V AC) or converted for use by the aircraft systems that need it.
A revolution is taking place in electric aviation. It offers the opportunity to fly cleanly. That said, the traditional technical challenges remain the same. Power and weight. In 140-years battery technology has advanced considerably. But is that enough?
A difficulty that battery powered flying is stuck with is that at the start and at the end of a flight the batteries weigh, more or less, the same as they did from the day of their manufacture. Today’s “conventional” civil aircraft consume fuel. Thus, they are significantly lighter at the end of a flight than they are at the start. Airframes can be designed to take advantage of this fact.
One of the up sides is that a good electric motor can get to an efficiency of 80% whereas a turbo fan engine comes in at around 35%. That sound great until we look at the amount of energy we can store within a given volume. Jet fuel packs a punch. To get the same punch from an electrical battery it would likely be 15 times the size. That’s not good for a practical design. The low battery energy density coupled with the high weight of batteries means that this strategy for large aircraft needs to be put to one side for now.
A modern aircraft engine like the CFM International LEAP, can develop a max take-off thrust of over 30,000 lbf. Two of those engines can safely accelerate a Boeing 737 or Airbus A320 with ease and cruise with good economy. Thus, electrification of the propulsion of this class of aircraft is a long way off. The nearest possible future for propulsion of a B737 and A320 sized aircraft may be hydrogen based.
This explains why the drawing boards are full of small electric aircraft designs where performance demands are more modest. There’s a hope that the continuous development of battery technology will provide year on year gains. Much more than aviation alone demands that battery technology advances.
Developments in hydrogen-electric aviation are catching the headlines. Much of what has been achieved is experimental. I look forward to the day when hydrogen is not used to fill airship gas bags but becomes the life blood of transport aviation. It’s conceivable that will happen in my lifetime.
[1] http://787updates.newairplane.com/787-Electrical-Systems/787-Electrical-System