Aircraft Safety and Fuel Starvation

Unsafe. In common language it’s the opposite to being safe. So, take a definition of “safe” and reverse it. Let’s say to be safe is to be free from harm (not a good definition). That would lead to “unsafe” being subject to harm or potentially being subject to harm. The probabilistic element always creeps in since it’s the future that is of concern. Absolute safety is as mercurial or unreal as absolute certainty.

Let’s apply this to an aircraft. The ultimate harm is that of a catastrophic event from which there is no escape. Surprisingly, taking a high-level view, there are few of these situations that can occur.

Flying, and continuing to fly, involves four forces. Lift, Weight, Thrust and Drag. It’s that simple. An aircraft moves through the air with these in balance. Flying straight and level, lift opposes weight and thrust opposes drag.

Yes, there are other safety considerations. If there are people on-board. For example, it’s important to maintain a habitable environment. At higher altitudes that requirement can be demanding. Structural integrity is important too. Otherwise flying is a short-lived experience.

In the recent Air India fatal accident, the four forces of flight were not maintained so as to make a continued safe flight possible. The wings provided lift but the force that was deficient was thrust.

Two large powerful engines, either of which could have provided enough thrust, were unable to do so. The trouble being fuel starvation. Fuel starvation occurs when the fuel supply to the engine(s) is interrupted. This can happen even when there is useable fuel on board an aircraft[1].

Sadly, in the records there are numerous aircraft incidents and accidents where this has happened. Quite a few fuel starvation incidents and accidents occur because of fuel mismanagement. This can result from a pilot selecting an incorrect, or empty, fuel tank during a flight.

Now and then, it is the aircraft systems that are at fault. The pilot(s) can be misled by a faulty fuel indication system[2]. In one notable case, a major fuel leak drained the aircraft’s fuel supply[3].

When there is useable fuel on-board an aircraft, the imperative is to restart and recover. It is not uncommon or unreasonable for there to be a delay in restarting engine(s), especially when a fuel starvation event is entirely unexpected. Diagnosis takes time given the numerous potential causes of a starvation event.

In cruise flight there is time available to perform a diagnosis and take appropriate corrective action. Both take-off and landing have their hazards. Both are busy times in the cockpit. When looking at the worldwide safety numbers, less fatal accidents occur on take-off than landing. The numbers Boeing provide put take-off at 6% and landing at 24% of fatal accidents. Each one only occupies about 1% of the total flight time.

Although these are the numbers, my view is that, even though take-offs are optional and landings are mandatory, the requirements for adequate thrust are most critical during take-off. This is arguable and it reminds me that safety assessment is never simple.


[1] https://www.faa.gov/lessons_learned/transport_airplane/accidents/G-YMMM

[2] https://asn.flightsafety.org/asndb/322358

[3] https://asn.flightsafety.org/asndb/323244

The Evolution of Air Traffic Control

Until civil air traffic started to grow the need for its control wasn’t the number one consideration. The pilot was the master of the skies. A basic “see and avoid” approach was taken. See another aircraft and avoid it at all costs. Note, I am talking about the early 1920s.

If you want a nice exploration of how it all started keep an eye on the site of the Croydon Airport Visitor Centre[1]. The first London airport was not Heathrow or Gatwick. No, there’s a stretch of grass, a hotel, industrial units and out of town shopping standing on the site in Croydon of the first London airport. 

Firstly, we can thank Marconi for the first radiotelephony. Providing a means for pilots to speak to airports enabled the development of Air Traffic Control (ATC)[2]. It got going out of necessity because there was limited space on the ground and many aircraft wanted to take-off and land.

Aerial navigation took off in the 1920s. A hundred years ago. WWII drove advancement in every aspect of technology. After WWII, the basic having been established, an international body was established to set standards for international flying. That’s where today’s ICAO originated.

Radar and VHF radio transmissions were the cutting-edge technology that enabled air traffic to grow. Radio navigation aids developed as did automatic landing systems. So, by the time the jet-age started there was a whole selection of technology available to manage air traffic. Not only that but the standards required for these systems to interoperate around the globe were put down on paper.

That legacy has served aviation remarkably well. Incremental changes have been made as new capabilities have been developed. Most notable of that evolution is to return elements of control to the cockpit. A traffic alert and collision avoidance system (TCAS) does just that. It provides a safety net.

What we have available to manage dense airspace and busy airports is a complex, highly interconnected, interdependent set of systems of systems and procedures that is not easy to unravel. Each part, in each phase of flight, plays its role in assuring safe operations.

News and rumours are that quick fixes are being demanded in the US. Responding to recent accidents and a perception that all the above in antiquated, a well know tech guru has been thrown at the “problem”. I shouldn’t be a cynic, as having a fresh pair of eyes looking at the next steps in the development of air traffic management should be good – shouldn’t it?

It’s my observation, as an engineer who knows a thing or two about these things, is that any simple solution means that the parties have not thought long enough about the problem. In this case there are no quick fixes. However, there’s likely to be incremental improvements and they will not come cheap. 


[1] https://www.historiccroydonairport.org.uk/opening-hours/

[2] https://www.historiccroydonairport.org.uk/interesting-topics/air-traffic-control/