Projects aiming to electrify aviation are numerous. This is one strand to the vigorous effort to reduce the environmental impact of civil aviation. Clearly, feasible aircraft that do not use combustion are an attractive possibility. This step shows signs of being practical for the smaller sizes of aircraft.
Along the research road there are several hurdles that need to be overcome. One centres around the source of airborne power that is used. State-of-the-art battery technology is heavy. The combinations of materials used, and the modest power densities available result in the need for bulky batteries.
For any vehicle based on electric propulsion a chief challenge is not only to carry a useful load but to carry its own power source. These issues are evident in the introduction of electric road vehicles. They are by no means insurmountable, but they are quite different from conventional combustion engineered vehicles.
The density of conventional liquid fuels means that we get a big bang for your buck[1]. Not only that but as a flight progresses so the weight of fuel to be carried by an aircraft reduces. That’s two major pluses for kerosene. The major negative remains the environmental impact of its use.
Both electricity and conventional liquid fuels have a huge plus. The ground infrastructure needed to move them from A to B is well understood and not onerously expensive. It’s no good considering an aircraft design entirely in isolation. Any useful vehicle needs to be able to be re-powered easily, not too frequently and without breaking the bank[2].
Back to the subject of weight. It really is a number one concern. I recall a certain large helicopter design were the effort put into weight reduction was considerable. Design engineers were rushing around trying to shave-off even a tiny fraction of weight from every bit of kit. At one stage it was mooted that designers should remove all the handles from the avionics boxes in the e-bay of the aircraft. That was dismissed after further thought about how that idea would impact aircraft maintenance. However, suppliers were urged think again about equipment handling.
This extensive exercise happened because less aircraft weight equated to more aircraft payload. That simple equation was a massive commercial driver. It could be the difference between being competitive in the marketplace or being overtaken by others.
Aviation will always face this problem. Aircraft design is sensitive to weight. Not only does this mean maximum power at minimum weight, but this mean that what power that is available must be used in the most efficient manner possible.
So, is there a huge international investment in power electronics for aviation? Yes, it does come down to semiconductors. Now, there’s a lot of piggybacking[3] from the automotive industries. In my view that’s NOT good enough. [Sorry, about the idiom overload].
[1] https://dictionary.cambridge.org/dictionary/english/bang-for-the-buck
[2] https://dictionary.cambridge.org/dictionary/english/break-the-bank
[3] https://dictionary.cambridge.org/dictionary/english/piggybacking