Future of Single Pilot Operations in Aviation

Flying embraces automation. Now, there’s a statement that didn’t ought to be controversial, but it can be. Even before we became engulfed by the modern digital age, analogue autopilots could assist in the task of flying. Some early ones were mechanical.

The need for full-time hands-on piloting of the physical controls that linked a human and an aircraft’s control surfaces is not fundamental. Large transport aircraft have stepped further, somewhat mimicking what their military counterparts did, and fly-by-wire systems have become commonplace.

As far as technological evolution is concerned, we remain in a transitionary phase. Commercial aircraft that fly overhead are a mixed community. Some, like the Boeing 737 series continue to have cables and pulleys that link aircraft systems and controls. Others, like the Airbus A320 series are the fly-by-wire digital aircraft types in regular service.

Between the pilots in the cockpit and the motion of an aircraft there is a computer. In fact, several computers arranged in a manner so that they continue to work even when subject to failures. A great deal of thought and effort has gone into designing aircraft systems that will be reliable in-service.

Looking at the safety numbers, starting in the 1980s when fly-by-wire was introduced, the overall service experience is extremely good. The practice of system safety assessment has delivered dependable and robust aircraft. Rigorous certification processes are applied. 

Through the technical developments that marched on from the 1980s one requirement has remained. That is that two pilots are needed in the aircraft cockpit. Granted there are exceptions to this rule for smaller transport aircraft. Single pilot operations are not new. For example, in many countries, the Cessna Caravan[1] is approved for a single pilot.

It’s 2025. It’s difficult not to notice the debate around Single Pilot Operations (SPO). That is to open large transport aircraft operations to a new rule. Lower operating costs may be achievable by making a change. It’s even said that this move is a way of continuing aviation’s growth as it becomes more and more difficult worldwide to increase the number of qualified pilots.

It’s good to see this subject being taken up in a forthcoming conference.

RAeS Flight Operations Conference 2025: Single Pilot Operations – Logical Progression or a Step Too Far?[2] 19 March 2025 – 20 March 2025. Royal Aeronautical Society Headquarters in London.

SPO may be enabled by use of complex systems to help make mission-critical decisions. The next step maybe with real-time “artificial” copilots and intelligent monitoring. Will this move the aviation industry toward safer and more efficient aircraft operations? That is the question.


[1] https://cessna.txtav.com/en/turboprop/caravan

[2] https://www.aerosociety.com/events-calendar/raes-flight-operations-conference-2025-single-pilot-operations-logical-progression-or-a-step-too-far

Investigating the Black Hawk and American Eagle Collision

What’s mysterious about the recent tragic collision between a US Army Sikorsky UH-60 Black Hawk helicopter and the American Eagle Flight 5342, was the failure of the normal procedure of “see and avoid” and the lack of an avoiding manoeuvre from the helicopter[1].

Taking the timings from reports of the investigators’ work so far, the air traffic controller’s instruction to the military helicopter to pass behind the commercial jet was seventeen seconds before the catastrophic collision impact. Given the trajectory of the commercial jet, as the pilots were focused on a landing, they had little possibility for an evasive manoeuvre other than a go-around. I imagine the commercial pilots and the tower controller reasonably assumed that the military helicopter would comply. In fact, why would they have any reason to question that assumption?

A question has arisen about night-vision goggles. Were the crew of the military helicopter using these devices? Night Vision Imaging System (NVIS) are not new[2]. They are used in both in military and commercial flying. There are a series of technical requirements that address their safe use. For commercial flying helicopters, that use such visual systems, they must additionally be equipped with a Terrain Avoidance and Warning System (TAWS). 

One of the down sides of night-vision systems are that the greatly enhanced capability can lead to overconfidence and potential misjudgements by pilots. When used by pilots these systems amplify ambient light and thus help pilots maintain visual references. That’s good for night flying over difficult terrain at low altitude. It’s not so good when there are multiple bright light sources all around, as there are in a big city.

I’m sure that the accident investigators will be giving the above subject a great deal of consideration. Afterall, the evening of this tragic accident was one of fine weather and fair visibility. The investigators have a significant task ahead analysing data and verifying the performance of both humans and machines in the accident situation.

NOTE 1: Worth a watch https://youtu.be/hlMTpIAlpw0

NOTE 2: Key safety system off in Army helicopter that collided with American Airlines jet, senator says | Reuters

NOTE 3: Night Flying “there are factors that can make it more challenging, like the lack of visual references and encountering visual illusions”. Flying into the Dark. What You Need to Fly at Night | by FAA Safety Briefing Magazine | Cleared for Takeoff | Jan, 2025 | Medium


[1] Evidence of a last-minute manoeuvre may still come to light. Sadly, the outcome remains the same.

[2] https://skybrary.aero/articles/night-vision-imaging-system-nvis

Advancements in Flight Recorder Technology and Regulations

My last posting addressed accident flight recorders and airworthiness requirements. That’s not enough. It’s important to note that aircraft equipage standards are addressed in operational rules. So, the airworthiness requirements define what an acceptable installation looks like but as to whether an operator needs to have specific equipage or not, that’s down to the operational rules in each country.

Internationally, the standards and recommended practices of ICAO Annex 6 are applicable. These cover the operation of aircraft. Flight recorders are addressed in para 6.3.1. and Appendix 8. Let’s note that ICAO is not a regulator. There are international standards but operational rules in each country apply to each country’s aircraft.

One of the major advances in accident flight recorders technology is the capability to record more data than was formerly practical. This has led to standards for Cockpit Voice Recorders (CVRs) advancing from 2-hour recording duration to 25-hours.

Proposed rule changes have been hampered by the impact of the global pandemic. Some new operational rules apply only to newly built aircraft. That means some existing aircraft can retain their 2-hour CVRs.

Another technology advance is what’s known as Recorder Independent Power Supply (RIPS). RIPS can provided power to the CVR for at least 10 minutes after aircraft electrical power is lost. The RIPS is often offered as a relatively straightforward aircraft modification.

I do not know if the South Korea Boeing 737-800 was required to have accident recorders with the capabilities listed above. If they were not, then there’s a good basis for recommending that changes be made to existing aircraft.

Understanding Aircraft Accident Recorders

There’s quite a bit of chatter on social media about accident flight recorders.

One of the skills required by an aircraft accident investigator, and not often mentioned, is the ability to grapple with rules, regulations, and technical requirements. This is given that civil aviation is one of the most highly regulated industries in the world.

The story of the development of the accident flight recorder is a long one. No way can a few words here do justice to all the efforts that has been made over decades to ensure that this vital tool for accident and incident investigation does what it’s intended to do.

In fact, that’s the first technical requirement to mention for accident recorders. Namely, FAR and CS Subpart F, 25.1301: Each item of installed equipment must be of a kind and design appropriate to its intended function. That basic intended function being to preserve a record of aircraft operational data post-accident.

Aircraft accident recorders are unusual. They are mentioned in the airworthiness requirements, however they play no part in the day-to-day airworthiness of an aircraft. The reality is more nuanced than that, but an aircraft can fly safely without working flight recorders.

FAR and CS 25.1457 refers to Cockpit Voice Recorders (CVR)[1] and 25.1459 refers to Flight Data Recorders[2]. Both CVR and FDR receive electrical power from the aircraft electrical bus that provides the maximum reliability for operation of the recorder without jeopardising service to essential or emergency electrical loads. Both CVR and FDR should remain powered for as long as possible without jeopardising aircraft emergency operations.

Before drawing too many conclusions, it’s important to look at the above certification requirements in relation to their amendment state at the time of type certification of an aircraft.

If the aircraft of interest is the Boeing 737-800 then the FAA Type Certification date is 13 March 1998 and the EASA / JAA Type Certification date is 9 April 1998. Without wading through all the detailed condition, the certification basis for the above aircraft type was FAR Part 25 Amendment 25-77 and JAR 25 Change 13 [Note: EASA did not exist at the time].

FAR and CS 25.1457 and 25.1459 were in an earlier state than that which is written above. That said, the objective of powering the recorders in a reliable way was still applicable. There was no requirement for the CVR or FDR to be powered by a battery. What hasn’t changed is the requirement for a means to stop a recorder and prevent erasure, within 10 minutes after a crash impact. That’s assuming that aircraft electrical power was still provided.

So, when it’s reported that the South Korea Boeing 737 accident recorders[3] are missing the final 4 minutes of recoding, the cause is likely to be the loss of the aircraft electrical buses or termination by automatic means or the removal of power via circuit breakers. We will need to wait to hear what is found as the on-going accident investigation progresses.


[1] https://www.ecfr.gov/current/title-14/section-25.1457

[2] https://www.ecfr.gov/current/title-14/section-25.1459

[3] https://www.bbc.co.uk/news/articles/cjr8dwd1rdno

Navigating AI

In my travels, I’ve seen derelict towns. The reason they were built has passed into history. A frantic fever swept through an area like an unstoppable storm. It might have been precious metals that excited the original residents. Gold rushes feed the desire to get rich quick. It doesn’t take the greatest minds in the world to figure out why gold fever will always have an appeal. The onrush of people joining the throng keeps going until opportunities have collapsed.

Breakthrough technologies, or their potential, can be just like a gold rush. There’s no doubt that 2025 will be a year of such phenomena. Top of the list is Artificial Intelligence AI[1]. If you want to be a dedicated follower of fashion[2], then AI is the way to go. Thank you, The Kinks. Your lyrics are as apt now as they were in the 1960s.

Predications range from the best thing since sliced bread to the end of humanity. Somewhere along that line is realism. Trouble is that no one really likes realism. It can be somewhat dull.

I’ve always viewed advancing technologies as a two-edged sword. On the one hand there are incredible benefits to be reaped. On the other, costs can be relatively unpredictable and devastating. I say “relatively unpredictable” as there’s always the advantage of knowledge with hindsight. Lots of commentators love to practice that one.

In desperation to gain the economic benefits of AI the current utterances of the UK Government may seem a little unwise[3]. Certainly, there’s nothing wrong with wishing to build a significant domestic capacity in this area of technology. What’s concerning is to always talk of legislation and regulation as a burden. Particularly when such language comes from lawmakers.

The compulsion to free-up opportunity for a western style gold rush like scenario has a downside. That is all too evident in the historic records. Ministers in this new Labour Government remind me of Mr. Gove’s past mantra – we’ve had enough of experts. Rational dialogue gets sidelined.

Even now we have seen generative search engines produce summaries of complex information sources that are riddled with holes. This experience reminds me of past work cleaning up aviation accident databases. Removing all those 2-engined Boeing 747s and airport IDs with one letter transposed. Data by its nature isn’t always correct. The old saying, to err is human, is always applicable.

The concerning aspect of AI output is its believability. If error rates are very low, then we stop questioning results. It gets taken for granted that an answer to a question will be good and true. There we have a potential problem. What next. AI to check AI? Machines to check machines? There lies a deep rabbit hole.


[1] https://www.technologyreview.com/2025/01/08/1109188/whats-next-for-ai-in-2025/

[2] https://youtu.be/stMf0S3xth0

[3] https://www.theguardian.com/technology/2025/jan/11/uk-can-be-ai-sweet-spot-starmers-tech-minister-on-regulation-musk-and-free-speech

SONAR in Ocean Wreckage Recovery

Finding aircraft wreckage in the deep ocean is possible. However, it requires a degree of good fortune. Most of all, it requires the searcher to look in the right places. Lots of other factors come into play, particularly if the ocean floor is uneven or mountainous.

The primary tool for imaging the ocean floor is SONAR. That’s using the propagation of sound in water. SONAR can be of two types. One is called “passive” and the other called “active”.

The first case is like using a microphone to listen to what’s going on around. Of course, the device used is named appropriately: a hydrophone. It’s a device tuned to work in water and not air. Afterall, sound travels much faster in a liquid than it does in air.

Passive SONAR depends on the object of interest making a noise. Just like we have directional microphones so we can have directional hydrophones.

Passive SONAR is only useful if the aircraft wreckage is making a noise. Since in the case of Flight MH370, the battery powered underwater location beacons attached to the accident flight recorders have long since stopped working this kind of SONAR isn’t going to be much use.

Active SONAR is analogous to RADAR. That is where a pulse of high frequency sound is sent out through a body of water. Then sensitive hydrophones pick up a reflection of that pulse. It is detected and all sorts of miraculous digital signal processing is done with the acoustic signal, and an image is then formed. From that displayed image the human eye or sophisticated algorithms can make sense of what they are looking at on the sea floor.

Active SONAR can give both range and bearing (direction). Timing the sound pluses from their transmission to reception can give a way of calculating range. Or distance from the object providing a reflection. Bats know how to do this as they navigate the dark.

In sea water, there are complications. Sound does not always travel in a straight line in sea water. The speed of sound in water depends on salinity, temperature and pressure. All three of these factors can be measured and compensated for in the SONAR signal processing that I mentioned above. Helpfully at ocean depths beyond a kilometre the calculations become easier.

The average depth of the Indian Ocean is over 3 kilometres. It’s mountainous underwater too. So, what are the chances of finding flight MH370 on the ocean floor after 10-years[1]? This prospect goes back to my earlier comment. It requires the searcher to look in the right places.

Just imagine encountering the Grand Canyon for the first time. It’s nighttime. An important object is lost in the canyon. You only have the vaguest theories as to where the object has come to rest. With a handheld touch you go out to search. What are the chances of finding the object?

There are several factors that are in your favour. One, you know what the object might look like or, at least, in part. Two, the easy search locations (flat/smooth) may be covered relatively quickly. Three, certain areas of the rocky canyon have already been searched. Still the odds are against finding the lost object without a high degree of good fortune. 

I wish the new planned searchers much good future[2].

NOTE 1: one of my student apprentice projects was to design and build a Sing-Around Velocimeter for use in relatively shallow sea water[3]. It worked but was cumbersome in comparison with the simple throw away devices used for temperature depth profiling.

NOTE 2: To get down to the ocean depths required it’s a side-scan sonar that may be used. This active sonar system consists of a towed transducer array that can be set to work at different depths. Imaging objects on the seafloor and underwater terrain is done as a towed array moves slowly forward through the water. The scanning part is the acoustic beam sweeps left and right. Each scan builds up part of an image.

In operation, as the frequency of the sound in water goes up so does the resolution of a potential image but, at the same time, the range of the sonar system goes down. Thus, a sonar system used for surveying may have low and high frequency settings. Unlike sound in air, here high frequency means above 500kHz.

NOTE 3: What will an aircraft accident recorder look like after a decade in the deep ocean? It might have survived well given the nature of the dark cold pressured environment. This picture is of an accident recorder recovered from relatively shallow sea water (Swiss Air Flight 111).

POST: Nice view of what SONAR can do, at least in shallow water Bristol Beaufort wreckage found


[1] https://www.cbsnews.com/news/mh370-plane-malaysia-new-search/

[2] https://www.bbc.co.uk/news/articles/cewxnwe5d11o

[3] https://apps.dtic.mil/sti/tr/pdf/AD0805095.pdf

Risks of Pruning Government

Everybody likes a good analogy. I don’t know if this one qualifies. We communicate by saying this thing is like this other thing. The first one being easier to understand than the one second. It’s a basic part of storytelling.

Who understands how government and its institutions grow? I’ve no doubt there are huge textbooks full of detailed analysis and complicated theories. Sitting on dusty library shelves. Written by knowledgeable and venerable academics.

I’m coming from a background that’s more practical. One of having mixed with and worked in bureaucratic structures built to serve a public good. Bureaucracies that have both traditional administrative and technical elements.

Here goes. Government, or rather the administrations, institutions and services are like a large oak tree. It’s kind of human pyramid in the sense that there’s a top and bottom. An upside-down tree minus the roots.

Oak trees are long lived. They have branches that are substantial so that they can carry a heavy load and suffer the battering of the wind and rain. Out on the furthest limbs they are young, spindly and vulnerable.

Today’s media is full of stories of what might come. There’s a new year in prospect. Across the Atlantic a new President is about to take-up office. Speculation is rife. One part of that speculation concerns the future of the large administration that is the federal state.

The Presidents favourite billionaire has ideas to take a chainsaw to the tree of administration. Generally speaking, a chainsaw isn’t the best tool for the job, but it certainly is scary. Maybe that’s the point. Keeping a huge, embedded administration on its toes.

My point, and I have one, which is more than I can say for Rory Stewart, a former minister, talking on the BBC this morning. My point is that pruning a tree requires the pruner to be competent. That’s having the attitude, skill and experience needed to make a good job of it.

Lopping off limbs of a working administration with the sole aim of saving money isn’t such a sound idea. Each branch has a purpose. It’s as well to have a comprehensive understanding of what that purpose is before the pruning starts. From that understanding can come a sound reason to prune.

Ideally, pruning should be good for the tree and good for everyone who depends upon it. Weak branches that suck-up energy even though their days are numbered should become firewood. Fledgling young branches that are heading out to explore new territory may need encouragement and support.

So, it is with government. There’s a lot of truth in Parkinson’s Law[1]. He knew a thing or two about bureaucracies. The clever bit is finding out where this phenomenon has taken off. Where the tree has grown way out of balance.

Will Musk be competent in pruning? Who knows. One thing is for sure. The potential for loping off a branch that is vital to health, wealth and happiness is all too real. Let’s watch and see.


[1] the law – “Work expands to fill the available time”

MH370 and MH17: A Decade On

The unthinkable happened in 2014. One major international airline suffered two catastrophic accidents. These tragic events ran contrary to all the trends in historic aircraft accident data.

In March, flight MH370 disappeared. In July, flight MH17 was shot down. In both cases there were no survivors from these international flights. This remains an unprecedented situation. It is a sobering consideration that such dreadful events were possible in a mature international framework of civil aircraft operations and regulation.

A decade on the pain of those who lost friends, family and colleagues in these tragedies is not diminished. Aviation should not lessen its attention to discovering more about what happened and putting measure in place to prevent reoccurrence of these events.

These two aviation catastrophes are different in respect of causal factors. One remains a mystery but, from what is known, has the hallmarks of an operational accident. The other is undoubtably an aggressive malicious act. Failings in the two elements of aviation safety and security, often viewed separately, are both capable of catastrophic outcomes.

Malaysia Airlines was a State-owned airline in the traditional model. There’s no reason to suppose that the airline harboured deficiencies that led directly to the two fatal accidents. In hindsight, the question is often asked: could both accidents have been avoided?

The extensive underwater search for MH370, in the southern Indian Ocean, resulted in no findings. However, floating debris from the fateful Boeing 777-200ER was discovered. Unlike what happened with Air France Flight 447 were the installed accident flight recorders were recovered from the deep ocean, there has been no such good fortune in respect of MH370.

Accident flight recorders are one of the primary tools for accident investigators. Installed recorders are built and tested to withstand extreme conditions. The reasonable assumption being that they will be found with any aircraft wreckage. The accident of MH370, is one where a deployable recorder may have been beneficial. That is one that ejects from an aircraft when it is subject to the high impact of the sea surface and then floats, possibly away from an accident site. There is a good case to be made for installing both deployable and installed recorders[1]. Particularly a case for long-range international overwater aircraft operations.

The facts surrounding the criminal act of shooting down of flight MH17 are well established. Sadly, in a troubled world it is impossible to say that such malicious acts will never occur again. What is to be done? Avoidance is by far the optimal approach. Commercial flying over warzones, where heavy weapons are known to be used, is extremely foolish. Now, it is good that much more flight planning attention is paid to understanding where conflict zones exist[2].

NOTE 1: On 07 March 2014 at 1642 UTC1 [0042 MYT, 08 March 2014], a Malaysia Airlines (MAS) Flight MH370, a Beijing-bound international scheduled passenger flight, departed from KL International Airport [KLIA] with a total of 239 persons on board (227 passengers and 12 crew). The aircraft was a Boeing 777-200ER, registered as 9M-MRO.

NOTE 2: On 17 July 2014, at 13:20 (15:20 CET) a Boeing 777-200 with the Malaysia Airlines nationality and registration mark 9M-MRD disappeared to the west of the TAMAK air navigation waypoint in Ukraine. All 298 persons on-bard lost their lives.


[1] https://flightsafety.org/files/DFRS_0.pdf

[2] https://www.easa.europa.eu/en/domains/air-operations/czibs

H2 Aircraft Design

Cards on the table. I’m a believer. Despite the immense technical challenges, Hydrogen is a viable fuel for future large civil aircraft. That said, operational service of such revolutionary aircraft isn’t going to happen in a hurry.

Reading the history, Concorde was an incredible test of the boundaries of what was possible and that was met, but it didn’t come easy. Breaking new ground is never easy. [A common saying that’s maybe open to challenge]. In aviation making step-changes happens every decade. What’s nearly always required is exceptional determination, almost beyond reason, large sums of money and special people.

Control systems – no big deal. Mechanical components – evolution possible. Turning a gaseous fuel into high-levels of propulsive thrust – can be done. Building a one-off technology proving research vehicle. It’s happening. At least for the light and commuter class of aircraft.

None of this is enough. Because the gap between an aircraft that can fly and an aircraft that can be produced in the thousands and go on to make an operational living and build an impressive safety and reliability reputation, that’s still a million miles off.

Today, there’s artist impressions of all sorts of different H2 aircraft configurations. It’s like people painted pictures of Mars with imaginary canals, long before anyone knew what the planet looked like in reality. Innovation starts with ideas and not all of them are sound.

As I expressed in my last article, crashworthiness must be given much consideration when speculating about future designs. It’s not always explicit in aircraft certification, cabin safety being the exception, but studying the history of accidents and incidents is essential. One of the successes of the authorities and industry working together is to take lessons learned seriously.

I remember looking at the pictures of the wreckage of Air France Flight 358, which crashed on landing in Toronto, Canada[1]. The fact that there were no fatalities from that accident is a testament to good operations and good design practices. The Airbus aircraft burned out but there was enough time for passengers and crew to get away.

My thought is what kind of H2 aircraft configurations would permit the same opportunity?

Considering this large aircraft accident, and others like it, then there’s a message as to where fuel tanks might best be placed. There’re some aircraft configurations that would have little hope of providing the opportunity for rapid evacuation of hundreds of people.

So, in my mind, don’t attached large pressurised cryogenic fuel tanks to the underbody structure of an aircraft fuselage. However robust the design and build of such fuel tanks they would be unlikely to survive as well as the cabin passenger seats, namely 9g[2]. That would not provide a good outcome post-accident.

Maybe, like aircraft engines sitting on pylons off the wings, that too is a good place for fuel tanks.


[1] https://asn.flightsafety.org/asndb/322361

[2] https://www.easa.europa.eu/sites/default/files/dfu/NPA%202013-20.pdf

Challenges of Hydrogen Fuel in Civil Aviation

This week has been a Hydrogen week. It’s great to learn more of the projects that are out there and the ambitions of those developing systems. Hydrogen is a live subject. Looking at the possible pathways for civil aviation to take there’s a myriad of choices. However, when it comes to the fuel for propulsion there are not so many potentials.

It’s surely the case that at some time in the future the use of fossil fuels to propel us across the skies will no longer be acceptable. Even if I’m talking to climate change sceptics the point must be made that fossil fuels are a limited resource. Not only that but the air quality around airports is a matter of concern.

It’s there in our basic education. Water is H2O. It’s that combination of Hydrogen and Oxygen that is essential to life on Earth. So, if we have a process that provides aircraft propulsion by using Hydrogen it should be a whole lot better for the environment than using Jet A1.

The problem is, and there’s always a problem, to carry enough Hydrogen it will need to be pressurised and in liquid form. That means extremely low temperatures, robust storage containers and extensive leak free plumbing.

Today, we have cars on the road that run on liquefied petroleum gas (LPG). It’s a novelty. It’s less harmful to the environment and can cost less. However, LPG systems need regular servicing. The point of mentioning this pressured gas in a transport system is that it has been integrated into regular everyday usage. That’s knowing that escape of even small quantities of the liquefied gas can give rise to large volumes of gas / air mixture and thus a considerable hazard[1].

Any analogy between the car and the aircraft can be forgotten. That said, one or two of the issues are similar. Yes, what happens when an escaped volume of gas / air mixture is ignited?

What scenarios would bring about conditions whereby a destructive explosion is possible?

Let’s start with the situations where aircraft accidents most often occur. Take-off and landing are those phases of flight. A surprising number of accident scenarios are survivable. The important part being to get an aircraft in trouble on the ground in such a way that an evacuation is possible. That can mean hitting the ground with a great deal of force[2].

Here’s the matter of concern. An aircraft with large cryogenic tanks and associated complex plumbing hits the ground at a force of many “g”. What then happens? Certainly, pressurised liquefied gas would escape. Being a very light gas, the uncontained Hydrogen would rise rapidly. However, trapped amounts of gas / air mixture would remain a hazard. Would that be ignited?

There are a lot of unknowns in my questions. Although there are unknowns, any post impact situation is likely to be very different from a situation with a conventionally fuelled aircraft.

Today’s, burn through requirements ensure that an external fuel fire is held back. Thereby ensuring enough time to evacuate. For a hydrogen aircraft ventilation may be essential to stop build-up of a gas / air mixture inside a fuselage. That means a whole different approach.


[1] https://youtu.be/AG4JwbK3-q0

[2] https://skybrary.aero/accidents-and-incidents/b772-london-heathrow-uk-2008