Turbulence

Turbulence is the result of atmospheric or environmental effects. Afterall, aircraft are craft that fly in the air. This is a hazard that is inherent in flying. Clear air turbulence (CAT) is common. However, extreme examples experienced in commercial aviation are rare. For one, aircraft operators and their crews do their best to avoid known potential atmospheric or environmental upsets, namely bad weather.

En-route turbulence accounts for a substantial number of cabin crew members injuries, and can occur at any time and at any altitude[1]. As far as I know, the UK Civil Aviation Authority (CAA) does not hold detailed data on turbulence injuries occurring on foreign registered aircraft. Numbers of injuries to passengers and flight crew on UK registered aircraft resulting from turbulence are recorded. However, it is not always known whether those injured in turbulence encounters were wearing seat belts.

Nevertheless, I can confidently say that the more passengers that are wearing seat belts during turbulence encounters the less the number of injuries. Deaths in these circumstances are rare. As might be expected fatalities are more likely to results from a combination of multiple causes and factors.

This subject is not immune from airline economics and competition. International flight routes can often be highly competitive. Fought over. So, the route taken, and associated fuel costs, can have an impact on the likelihood of a hazardous weather encounter. In fact, choosing to take routes for the benefit of picking-up specific winds is a common practice.

A high percentage of cases of turbulence events come about by flying too close to active storms[2]. Here there is often visual cues, reports, forecasts and feedback from turbulence encountered by other flights. This all helps crews avoid the worst weather encounters.

With very few exceptions, flight turbulence does not result in fatalities, permanent injure, or structurally damage commercial aircraft. However, turbulence is recognised as both an aviation safety and an economic issue, and it has been steadily increasing. Speculation and some research cites climate change as a reason for this increase. Also, there is the international growth in air traffic and development of new long-range routes.

One thing to say is that until recently, with INTERNET connections now in both in the cockpit and cabin, it could be the case that a passenger could access better real-time weather information than a flight crew. Now, SATCOM connections providing up-to-date weather information are more common on modern civil aircraft types.

There is still more that can be done to reduce crew and passenger injuries during turbulence encounters. There will inevitably happen despite any policy to avoid hazardous weather. The greatest threat to life exists to cabin crew. The cabin is their place of work.

There is potential to develop and employ better airborne detection systems to assist crews. That maybe by enhancing existing weather radar systems. It maybe by new means of turbulence detection using LIDAR, and possibly AI/ML. There is research and innovation that could be done to develop algorithms to better predict turbulence hazards.

Avoidance remains the best strategy.


[1] NASDAC Turbulence Study, August 2004

[2] US CAST briefing in 2004.

Harmonisation

There’s an example in of itself. I’ve used the British English spelling. Perhaps I should have standardised on the American spelling, namely Harmonization. Or does it matter at all given that the definition of the word remains the same, whatever. Oh, I can’t resist the temptation to say; you say Tomato, I say Tomato.

“You say tomato, I say tomato.

You eat potato and I eat potato,

Tomato, tomato, potato, potato,

Let’s call the whole thing off.”

Naturally, in the voice of Fred Astaire[1]. Nice though this is, my subject is not pronunciation.

Aviation is a highly regulated business. It’s been that since its potential for transporting huge numbers of people around the globe was recognised. Safety must be number one. Although, it’s not if you read the first few words of the all-important Chicago convention.

Article 1: Every state has complete and exclusive sovereignty over airspace above its territory.

In the minds of those who signed the convention it was sovereignty that took first place. That didn’t mean abusing the word “sovereignty” as has to often been done. Afterall, the whole basis of the Convention on International Civil Aviation was international cooperation. It still is.

Let’s put that to one side for a moment. One of the challenges of international aviation has been the different rules and regulations in place in each country. There’s a level of harmony in the standards of the International Civil Aviation Organization (ICAO). But ICAO is not a regulator and it’s for each country to interpret agreed standards within their domestic law.

Europe, or at least the European Union (EU) is different in this respect. Since there’s European law and an active European regulator then there’s common rules and regulation set for a regional grouping of countries. So far, Europe is the only region to go this far.

When it comes to aircraft airworthiness this has been a topic of a lot of discussion in the last four decades. In the 1990s, that discussion centred around the idea that a single worldwide code was a desirable achievement. That the time the two major entities engaged in the business of aviation rulemaking, and the maintenance of rules were the FAA (US) and the JAA (Europe).

A single worldwide code could greatly facilitate the movement of aviation produces around the globe. That done to ensure that common safety standards were maintained on every occasion. It proved hard to get to this utopian condition. That said, a great deal was achieved in the harmonisation of existing civil aviation codes. Today, we benefit from that work. I’d say we even take it for granted.

In around 2000, after much study, countries concluded that it was fine to seek some form of equivalence between respective rules rather than having to write done one single set of rules. Mutual recognition has flourished in the form of agreements between countries that has smoothed the path for the aviation industries.

That last major study of the pros and cons of harmonisation is now nearly a generation old. A lot has moved on. For one, in Europe the JAA transition to the EASA.

At the same time the manufacturing countries worked closely together to agree on measures to ensure that there was no great divergence in rules and regulations. Now subjects, like Safety Management Systems (SMS) became codified. However, sovereign countries continued to develop and maintain their own aviation rules and regulations.

International working groups often achieve remarkable commonality and convergence on detailed technical topics. Often because the few people who were deeply embedded in a technical subjects all knew each other and shared information relatively freely.

Discussion as to the viability of a single worldwide code has not completely faded into the past. In fact, there’s some good reason to breath life back into this historic debate. Here’s what’s added to the dynamics of the situation:

  1. Ongoing moves from prescriptive rules to more performance-based rules,
  2. Entirely new products in development, like eVTOL aircraft,
  3. Interdependency, interconnection, and integration all increased since 2000,
  4. Security and safety are becoming inseparable,
  5. Digitisation is changing the ways that we ensure that an aircraft is airworthy.

If you have knowledge of, and thoughts on this subject, I’d be happy to hear from you.


[1] https://youtu.be/LOILZ_D3aRg

Happy Birthday EASA

Happy Birthday EASA. 20 years is a good age

For me, it was a peculiar day in July. It was a baking hot Brussels. The sun beat down and the city’s trams were full of sweaty travellers. The interview room was a classic board room style. Modern office, heavy polished wooden table, and heavy black leather chairs. On a hot bright sunny summer day that was not a pleasing formula for a formal interview.

I was surprised at the result. I got the job. A moment in July 2004 became a pivotal moment in my aviation career. Not quite 20-years ago. The European Aviation Safety Agency (EASA)[1] was already up and running in a shared office in a Brussels suburb. It was the bare bones of an organisation in the process of a rapid build-up. Discussion about the locations of the Agency’s eventual headquarters were concluding.

That kicked-off my 11-years in Cologne. I arrived in the city when the tower building was being constructed and as the staff had just moved from Brussels to take up the new headquarters. It was December 2004. Offices, on the 6th floor of the main building were buzzing. The Agency was small in numbers and running fast to fulfil its new responsibilities.

European aviation safety regulation was going through a major change. Up until September 2003, Europe’s National Aviation Authorities (NAAs) acted as a partnership within the Joint Aviation Authorities (JAA)[2]. A body of rules and regulations and ways of working had been harmonised. However, because of the “club” like nature of the JAA there remained unresolved disagreements, incontinences, and a confusing representation at international level.

The legislation that called for the formation of EASA was set to unify aircraft certification and rulemaking activities and drive a consistency in the application of standards across Europe. It was the start of a long road to build world-class civil aviation safety regulator. It worked.

I experienced the first decade in Cologne. The storming and norming. The extensions of remit and turbulent days when we were finding our way. Several tragic fatal accidents and a least one Europe wide crisis. Now, the Agency is about to start its third decade.

EASA is undisputed as the European organisation that talks to the international aviation community. It works in lockstep with the European Commission. It is an achievement to be celebrated.

Yes, I find it sad that the UK is no longer a member of the Agency. But that doesn’t stop National Aviation Authorities (NAAs) working together in a constructive and positive manner[3]. There’s much to be gained from avoiding the fragmentation and conflicts of the past.

Happy Birthday EASA. 20 years is a good age.


[1] What’s #EASA’s story? See what we have achieved in 20 years  https://www.easa.europa.eu/…/looking-back-move-forward…

[2] https://jaato.com/start/

[3] https://www.easa.europa.eu/en/domains/international-cooperation/easa-by-country

Don Bateman

At the start of the jet-age, changes in aircraft design and the improvement of maintenance procedures made a significant improvement in aviation safety. One set of accidents remain stubbornly difficult to reduce. This is the tragic case where a perfectly airworthy aircraft is flown into the ground or sea. Clearly the crew, in such cases had no intention to crash but never-the-less the crash happens. Loss of situation awareness, fixation on other problems or lack of adherence to standard operating procedures can all contribute to these aircraft accidents. So often these are fatal accidents.

One strategy for reducing accidents, where there is a significant human factor, is the implementation of suitable alerting and warning systems in the cockpit. It could be said that such aircraft systems support the vigilance of the crew and thus help reduce human error.

For decades the number one fatal accident category was Controlled Flight Into Terrain (CFIT). It always came top of global accident analysis reports. Pick up a book on the world’s major civil aircraft crashes since the 1960s and there will be a list of CFIT accidents. By the way, this term CFIT is an internationally agreed category for classifying accidents[1]. 20-years ago, I was part of a team that managed these classifications.

When I started work on aircraft certification, in the early 1990s, the Ground Proximity Warning System (GPWS) already existed. A huge amount of work had been done since the 1970s defining and refining a set of protection envelopes that underpinned cockpit warnings aimed at avoiding CFIT.

UK CAA Specification 14 on GPWS dates from 1976[2]. This safety equipment had been mandated in many countries for certain types of public transport aircraft operation. It was by no means fitted to all aircraft and all types of aircraft operation. This was highlighted when an Air Inter AIRBUS A320 crashed near Strasbourg, in France in January 1992[3].

No alerting or warning system is perfect. GPWS had been successful in reducing the number of CFIT accidents but there were still occurrences where the equipment proved ineffective or was ignored.

I first met Don Bateman[4] on one of his whistles-stop tours presenting detailed analysis of CFIT accidents and the latest versions of the GPWS. At that time, he was working for the company Sundstrand[5], based in Redmond in Washington State, US. It was a time when Enhanced GPWS (EGPWS)[6] was being promoted. This version of the equipment had an added capability to address approaches to runways where the classic GPWS was known to give false results. False alerts and warnings are the enemy of any aircraft system since they reduce a crew’s confidence in its workings.

My role was the UK approval of the systems and equipment. Over a decade the industry moved from a basic GPWS to EGPWS to what we have now, Terrain Avoidance and Warning Systems (TAWS).

When I think of Don Bateman’s contribution[7], there are few people who have advanced global aviation safety as much as he did. His dedication to driving forward GPWS ensured the technology became almost universal. Consequently, there must be a large number of lives saved because of the CFIT accidents that did not happen.

He left no doubt as to his passion for aviation safety, was outstandingly professional and a pleasure to work with on every occasion. This work was an example of a positive and constructive partnership between aviation authorities and industry. We need more of that approach.

POST 1: Don Bateman Saved More Lives Than Anyone in Aviation History | Aviation Pros

POST 2: Don Bateman, ‘Father’ Of Terrain Awareness Warning Systems, Dies At 91 | Aviation Week Network


[1] https://www.intlaviationstandards.org/Documents/CICTTStandardBriefing.pdf

[2] https://publicapps.caa.co.uk/docs/33/CASPEC14.PDF

[3] https://reports.aviation-safety.net/1992/19920120-0_A320_F-GGED.pdf

[4] https://www.invent.org/inductees/c-donald-bateman

[5] https://archive.seattletimes.com/archive/?date=19930125&slug=1681820

[6] https://aerospace.honeywell.com/us/en/pages/enhanced-ground-proximity-warning-system

[7] https://aviationweek.com/air-transport/safety-ops-regulation/don-bateman-father-terrain-awareness-warning-systems-dies-91

To provoke

Social media provocateurs are on the rise. Say something that’s a bit on the edge and wait for the avalanche of responses. It’s a way of getting traffic to a site. The scientific and technical sphere has these digital provocateurs less than the glossy magazine brigade, but the phenomena is growing.

Take a method or technique that is commonly used, challenge people to say why it’s good while branding it rubbish. It’s not a bad way to get clicks. This approach to the on-line world stimulates several typical responses.

One: Jump on-board. I agree the method is rubbish. Two: I’m a believer. You’re wrong and here’s why. Three: So, what? I’m going to argue for the sake of arguing. Four: Classical fence sitting. On the one hand you maybe right on the other hand you may be wrong.

Here’s one I saw recently about safety management[1]. You know those five-by-five risk matrices we use – they’re rubbish. They are subjective and unscientific. They give consultants the opportunity to escalate risks to make new work or they give managers the opportunity to deescalate risk to avoid doing more work. Now, that’s not a bad provocation. 

If the author starts by alleging all consultants and managers of being manipulative bad actors that sure is going to provoke a response. In safety management there are four pillars and one of them is safety culture. So, if there are manipulative bad actors applying the process there’s surely a poor safety culture which makes everything else moot.

This plays into the discomfort some people have with the inevitable subjectivity of risk classification. It’s true that safety risk classification uses quantitative and qualitative methods. However, most typically quantitative methods are used to support qualitative decisions.

There’s an in-built complication with any risk classification scheme. It’s one reason why three-by-three risk matrices are often inadequate. When boundaries are set there’s always the cases to decide for items that are marginally one side or other side of a prescribed line.

An assessment of safety risk is just that – an assessment. When we use the word “analysis” it’s the supporting work that is being referenced. Even an analysis contains estimations of the risk. This is particularly the case in calculations involving any kind of human action.

To say that this approach is not “scientific” is again a provocation. Science is far more than measuring phenomena. Far more than crunching numbers. It includes the judgement of experts. Yes, that judgement must be open to question. Testing and challenging is a good way of giving increased the credibility of conclusions drawn from risk assessment.


[1] https://publicapps.caa.co.uk/docs/33/CAP795_SMS_guidance_to_organisations.pdf

SPO 2

An instant reaction to Single Pilot Operations (SPO) is like the instant reaction to completely autonomous flight. “I’m not getting on an aircraft without a pilot!” Then to justify that reaction fatal accidents of the past are cited. Typically, this is to remind everyone of the tragic Germanwings accident[1]. It was 24 March 2015, that an Airbus A320 was crashed deliberately killing all onboard.  

However, it’s wise to remember that the likelihood of incapacitation[2] is much greater than that of the malicious behaviour of the pilot in command. Cases of malicious behaviour leading to a catastrophic outcome are truly shocking but extremely rare.

One fatal accident, that is still disputed is EgyptAir Flight 990[3] that killed 217 people in 1999. The possibility of inflight pilot suicide is unnerving, since on the face of it there is little any of the aircraft’s cabin crew or passengers can do to stop it.

This could be a future opportunity to use automation to prevent these scenarios occurring. Afterall the aircraft knows where it is and that a sustained high-speed dive towards the ground is not normally intended. A safety system exists to do this[4], but its outputs are not connected to the aircraft’s flight controls.

Humans being adaptable, extremely creative and capable of highly irrational actions, it’s unlikely that malicious behaviour resulting in aviation accidents will ever be reduced to zero. This is said regardless of the procedures or technology involved. The fate of flight MH 370 remains a mystery.

Thus, the prominent safety issue in respect of SPO is pilot incapacitation. Where the pilot in command is no longer able to perform as expected. That is, if the aircraft flown is not capable of safely landing itself. The objective always being safe continued flight and landing.

I’ve had the “1% Rule” rule explained to me by a notable aviation doctor, but I must admit I didn’t fully take it in. So far, the rule has stood the test of time. When the pilot in command of a Czech Airlines aircraft collapsed and died on route from Warsaw to Prague in 2012, the co-pilot took over and everyone got home safely.

Any automated co-pilot must be at least as capable as a human co-pilot in all aspects of operation of an aircraft. The key word here being “all”. It’s not enough to have the functions necessary to undertake safe continued flight and landing. Task such as communicating with the cabin crew and passengers must also be considered. Including preparation for an emergency landing.


[1] https://www.bbc.co.uk/news/world-europe-32072218

[2] http://www.avmed.in/2012/02/pilot-incapacitation-debate-on-assessment-1-rule-etc/

[3] https://www.theguardian.com/world/2002/mar/16/duncancampbell

[4] https://skybrary.aero/articles/terrain-avoidance-and-warning-system-taws

Air Safety List 2

It may seem obvious that there should be an Air Safety List that bans airlines that do not sufficiently met international standards. It’s a right that exists within the Chicago Convention[1]. The first words of the convention concern sovereignty. Every State has complete and exclusive sovereignty over their airspace. From the first days of flight the potential use of aircraft to wage war was recognised. Thus, it could be said that the first article of the Chicago Convention existed even before it was written down and agreed.

However, it’s similarly recognised that the future development of international civil aviation has always depended upon agreements between States. Without over-flight and permission to land in another country there is no international civil aviation.

I do remember some agonising over having an explicit list of banned countries and airlines. In a liberal democracy choice is greatly valued. Here the choice concerns passengers being permitted to board aircraft from another country where there is knowledge of safety deficiencies related to the operation of the aircraft of that country. Should the law make that choice for the air traveller, or should the air traveller be free to make an informed choice?

There lies the crux of the matter. How do ordinary citizens, without aviation safety expertise make judgements concerning complex technical information? Understanding the implications of failing to meet the International Civil Aviation Organization’s Standards and Recommended Practices (SARPs)[2] is not so easy even for aviation experts.

Additionally, there is the issue of third-party risks. It would not be wise to permit foreign aircraft, whose safety is not sufficiently assured, to fly over a nation’s towns and cities.

Regulatory legislation was framed not only to put airlines on the Air Safety List but to take them off the list too. In fact, sometimes this is harder law to frame. In this case the decisions must be made in a fair, transparent, and technically rigorous manner otherwise the politics of such choices could overwhelm the whole process.

There’s been much success in this endeavour. It’s clear that this is a valuable aviation safety measure. It may have driven some contracting States to improve the performance of their airlines.


[1] https://www.icao.int/publications/Pages/doc7300.aspx

[2] https://www.icao.int/safety/CMAForum/Pages/default.aspx

Walk the line

Aeronautical products must be certified before entering transport services. Is certification too complex? Is it too expensive and thus a barrier to innovation? Hasn’t deregulation delivered successes since the 1970s? More choice and more aviation services across the globe.

These are perfectly reasonable questions. They are asked frequently. Especially during economically tough times and when new products are pushing to get operational. In answering, it’s all too often a butting of heads that results. Industry puts its point. Authorities put theirs. Commercial reality and public interests settle at some point which leaves the debate on the table for next time.

Walking that line between satisfying the demand of the new and protecting the good safety performance of the aviation system is a perpetual challenge. It goes without saying that we all know what happens when the line is crossed. Textbooks will continue to chew over stories like that of the Boeing 737 MAX development. In fact, the stories of safety lapses are an important part of the learning process that led to aviation’s admirable safety record.

The counter argument is that we are in a new situation and that technology has significantly changed. This argument of the “new” is not new. Every major new step encountered significant hurdles to overcome. Pick-up the story of the development of the Boeing 747[1][2] and it’s a real dramatic page turner. However, the problem remains the same but as much innovative thinking needs to go into certification as the products that are certified. There’s a reason that’s difficult and its called legacy.

On the public’s behalf, how big is the risk appetite of the certification authorities? At the same time how far do the innovators want to push the envelope knowing that liability rest on their shoulders?

What I find inadequate is that when reading reports like “Funding Growth in Aerospace[3]” I find little, or no consideration is given to funding regulatory improvement. Arguments are for product development and little else. It’s as if certification activities are to be blamed for holding up innovations introduction to service but forget any thought of increasing the resources for certification activities.

It’s short-sighted. Believe it or not there is money to be made in testing and validation. There’s money to be made in education and training. These go hand in hand with efforts to exploit innovative products.


[1] https://www.bbc.co.uk/news/business-37231980

[2] https://www.theguardian.com/science/2016/sep/07/joe-sutter-obituary

[3] https://www.ati.org.uk/publications/

Air Taxi 3

Urban mobility by air, had a flurry of success in the 1970s. However, it did not end well.

Canadian Joni Mitchell is one of the most celebrated singer-songwriters and my favourite. She has tapped into the social and environmental issues that have concerned a lot of us for decades. Of her large catalogue, I can’t tell you how much I love this song[1]. The shear beauty of the lyric.

Anyway, it’s another track on the album called “Hejira” that I want to refer. When I looked it up, I found out, I was wrong. The song I want to refer to is on the 1975 album “The Hissing of Summer Lawns”. The song “Harry’s House[2]” contains the line “a helicopter lands on the Pan Am roof like a dragon fly on a tomb.” Without going into what it’s all about, the lyrical image is that flying from a city skyscraper roof was seen as glamorous and the pinnacle of success.

In 1970, prominent aviation authorities were talking about the regulatory criteria needed for the city-centre VTOL[3] aircraft of the future. Then on the afternoon of 16 May 1977, New York Airways Flight 971, a Sikorsky S-61 helicopter, crashed[4] on Pan Am’s building rooftop heliport[5]. That ghastly fatal accident reset thinking about city centre operations air transport operations.

So, what’s different 50-year on? Proposals for city centre eVTOL operations are much in the News. City planners are imagining how they integrate an airborne dimension into public transport operations. Cars, busses, trains and eVTOL aircraft may all be connected in new multimodal terminals. That’s the city transport planners’ vision for less than a decade ahead.

For one, the vehicles are radically different. Yes, the physics of flight will not change but getting airborne is quite different between a conventional large helicopter and the plethora of different eVTOL developments that are underway across the world.

Another point, and that’s why I’m writing this piece, is the shear amount of safety data that can be made available to aircraft operators. Whereas in the 1970s, a 5-parameter flight recorder was thought to be neat, now the number of digital parameters that could be collected weighs in over thousands. In the 1970s, large helicopters didn’t even have the basic recording of minimal flight data as a consideration. The complexity in the future of eVTOL will be, not how or where to get data but what to do with all the data that is streamed off the new aircraft.

Interestingly, this changes the shape of the Heinrich and Bird “safety pyramid” model[6]. Even knowing about such a safety model is a bit nerdy. That said, it’s cited by specialist in countless aviation safety presentations.

Top level events, that’s the peak of the pyramid, remain the same, but the base of the pyramid becomes much larger. The amount of safety data that could be available on operational occurrences grows dramatically. Or at least it should.

POST: Growing consideration is being given to the eVTOL ecosystem. This will mean a growing need to share data Advanced Air Mobility Portal (nasa.gov)


[1] https://youtu.be/nyj5Be5ovas

[2] A nice cover https://youtu.be/bjvYgpm–tY

[3] VTOL = Vertical Take Off and Landing.

[4] https://www.nytimes.com/1977/05/17/archives/5-killed-as-copter-on-pan-am-building-throws-rotor-blade-one-victim.html

[5] https://www.thisdayinaviation.com/16-may-1977/

[6] https://skybrary.aero/articles/heinrich-pyramid

Flight, Risk & Reflections 4.

It’s under 100 days to go to the final, final, final Brexit exit. This Autumn flying faces the quadruple threats of rising Coronavirus numbers, diminishing Government support, implementation of erratic polices and the possibility of a disorderly end to the EU-UK Withdrawal Agreement transition period. The shining light is that everyone knew that this was coming, and adding up all the turmoil of the last 4-years it has at least given industry and institutions time to come to terms with the situation and prepare accordingly.  Yes, there are a bucket load of unknowns. 

On the plus side as soon as we get past 1 January 2021 there will be less constraints for either party. The European Union (EU) will be able to go ahead with actions once blocked by the UK. Vice-versa the UK will be able to develop its own unique set of policies, rules and regulations. 

If both parties don’t lose their basic common sense there ought to be a good degree of continuing communication, collaboration and cooperation.

I agree with the AIRBUS CEO: “Aviation, an irreplaceable force for good in the world, is today at risk as borders remain closed and influential voices in Europe call for permanent curbs on flying.”

Recently the British Business General Aviation Association (BBGA) hosted a webinar [1]dedicated to all matters Brexit. Good of them to make it available on-line to non-members.

In addition, there’s a “Readiness for Brexit[2]” update from Tim Johnson, Strategy and Policy Director UK CAA now on-line. This is about the CAA’s readiness for what’s going to happen at the end of the transition period.  There’s a promise of continuity, at least for a while[3].

It saddens me greatly that the UK will no longer be part of the EU Aviation Safety Agency (EASA) system but that’s now a matter of fact. Who knows what the future may bring? It’s perfectly possible that the UK will be back in the system in the next decade.

There’s a lot of reasons why it’s going to be difficult for the UK to act entirely alone. For efficient and sustainable air traffic management the European Single European Sky (SES) project will continue to advance. It would be better for all if the UK was part of that advancement.

We need to concentrate on dealing with the present situation and maximising positive working with Europe. There are many areas of common interest. We remain a great European Country.


[1] https://www.avm-mag.com/bbga-to-conduct-brexit-info-webinar/

[2] https://www.caa.co.uk/Blog-Posts/Readiness-for-Brexit/

[3] https://publicapps.caa.co.uk/docs/33/UK%20Safety%20Regulation%20outside%20EASA%20(CAP1911)%20SEP%202020.pdf